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What do | do?

The range of assessed scenarios results in a range of 21st century projected global warming.

b. Peak and 2100 global warming across
scenario categories, IMPs and SSPx-y
a. Median global warming across scenarios in categories C1 to C8 scenarios considered by AR6 WGI
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The Climate problem

(O



Human influence has warmed the climate at a rate that is unprecedented
in at least the last 2000 years

Changes in global surface temperature relative to 1850-1900

(a) Change in global surface temperature (decadal average) (b) Change in global surface temperature (annual average) as observed and
as reconstructed (1-2000) and observed (1850-2020) simulated using human & natural and only ngiusa kgth 1850-2020)
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’? Warming is unprecedented
What do we know
" 1.5 15
Warmest multi-century observed
period in more than ¥ imuiated
1.0 100,000 years ety
q ) ) ) observed natural
It is unequivocal that human influence .
has warmed the atmosphere, ocean . '
and land. Widespread and rapid i ,f
changes in the atmosphere, ocean, e
cryosphere and biosphere have -05
)
occurred (|PCC ARG, 2022) .
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(c) Since 1960-1980 several high-accuracy global networks measure
surface concentrations of CO,, CH,, and N,O. Current concentrations
are higher than measured in ice cores during the last 800,000 years

@ What do we know?
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concentrations since around 1750 are unequivocally caused 1288 Q
by human activities. Since 2011 (measurements reported in -
ARS), concentrations have continued to increase in the —NOAA | 1000 &
atmosphere, reaching annual averages of 410 parts per million | .
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(ppb) for methane (CH 4), and 332 ppb for nitrous oxide (N 20) in , 3321
2019.6Land and ocean have taken up a near-constant o i — NOAA N '
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What do we know?

C
t Average temperature

. Incoming
increases i

The balance between incoming and
outgoing radiation determines the
temperature



@ Consequences of a warmer world

CLIMATOLOGICAL EVENTS
Extreme temperatures,
drought, forest fire

HYDROLOGICAL EVENTS
Flood, mass movement

e Sealevelrise e
e Sea Ice and snow melting
e Ocean acidification
e Disrupts ocean circulations “
e Increases floods
MRS I
e Increasing wildfires S~ P U -1 I
e Increasing droughts -> reduce the
availability of freshwater Source: National Geographic
e Increase in climate refugees -> conflict
e Biodiversity loss
e Human health
o

Economic loss @



Key IPCC findings since 1990

Atmospheric CO2 concentration has continued to increase

1990 IPCC 1st
Assessment
Report

*Emissions resulting
from human activities
are substantially
increasing the
atmospheric
concentrations of the
greenhouse gases (...)
These increases will
enhance the
greenhouse effect,
resulting on average in
an additional warming
of the Earth’s surface."

1995 IPCC 2nd
Assessment
Report

"The atmospheric
concentrations of
greenhouse gases (...)
have grown
significantly [...) These
trends can be attributed
largely to human
activities [...)

2001 IPCC 3rd
Assessment
Report

"There is new ond
stronger evidence that
most of the warming
observed over the last
50 years is attributable
to human activities."

How did we get here?

2007 IPCC 4th
Assessment
Report

"Warming of the climate
system is unequivocal
(...) Most of the
observed increase in
global average
temperatures since the
mid-20th century is very
likely due to the
observed increase in
anthropogenic GHG

concentrafions”

2014 IPCC 5th
Assessment
Report

"Human influence on the
climate system is clear,
and recent
anthropogenic
emissions Of greenhouse
gases are the highest in
history”

o

2021 IPCC 6th
Assessment
Report

"It is unequivocal that
human influence has
warmed the atmosphere,
ocean and land."



How does science works and

do we all agree? é

97% of climate scientists agree

o umeneerecanenagibsein o Only 3% disagree
Yy Yy Yy Yy Yy Yy yyyy. Examinin g 11 944
climate  abstracts
from 1991-2011

SOUfCGZJohn Cook et al 2013 Environ.
Res. Lett. 8 024024

Doran & Zimmermann 2009; Anderegg et al 2011; Cook et al 2013 http://sks.ts



WMO and UNEP
established the IPCC
Earth summit in Rio

Kyoto Protocol
Copenhagen accord

Durban platform
Paris agreement




Kyoto vs Paris

Top-down vs Bottom-up

KYOTO PARIS
5 5
From 2008 to 2012, the @ @ e All parties were invited to
developed countries were submit their contributions
required to reduce their e Not Legally binding
emissions by 5.2% below e Keeping a global temperature

the 1990 level

_ rise this century well below 2
Legally binding

degrees Celsius above
pre-industrial levels and to
pursue efforts to limit the
temperature increase even
further to 1.5 degrees Celsius







Historical 002 emissions

@ SOUICE world Bank and Global Carbon Project



People at risk

SOUI'Ce :world Bank and Global Carbon Project



@ SOUICE :world Bank and Global Carbon Project



Do you see the problem?
( Historicgl ook > ( People at risk ) ( Poverty >
emissions

SOUICe . world Bank and Global Carbon Project




The Intertemporal

Problem

We will have to decide now but the future
generations will be the ones living the
consequences of our decisions.

How should we discount the future?
(mitigation, risky options (e.g. geo-engineering))
1MS today * e ~ (-r*t) (r= discount rate)

in 2100:
1% -> 458406,0 $
3% ->96327,6 $

4% -> 4253,6 $ »



Why is Climate change such a complex

problem??

L )

Long time horizons: CO2
stays in the atmosphere
for ~100 years

North-South equity concerns:
mismatch between responsibility
and vulnerability

Many-nation “commons”: A
country alone cannot avoid
impacts even if it cuts its
emissions completely

How to deal with GDP
growth? And energy
poverty

Emissions reductions will not
be felt immediately, but need to
be reduced now!

Uncertainty: adaptation
and mitigation measures
and tipping-points
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So...How do
we solve I1t?



The principles of Climate policy (UNFCCC)

Fairness Justice Equity
Agree on fairness Impacts are unevenly felt “common but
(adaptation) differentiated
Loss and damage responsibilities”



Policy instruments

Three types of policy tools
Command & Market-based R&ED based
control

Emissions standards ° Carbon tax (or social Sub5|d|es
Performance cost of carbon) R&D spending
Labels e cap-and-trade

Renewable mandates

Extraction bans

@ ~
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There are several ways of allocating

everyone's pollution permits

_ o . e GF: Grandfathering
Fairness principles and allocation rules 2 . .
e |EPC: Immediate per capita
Responsibility Convergence

e PCC: Per capita convergence
e ECPC Equal Cumulative per capita
Capability emissions
e e AP: Ability to pay
e GDR: GH development rights
e (O: Cost-Optimal

Grandfathering Cost-optimal

SOUrCe:.van den Berg, N.J., van Soest, H.L., Hof, AF. et al.

Implications of various effort-sharing approaches for national carbon
budgets and emission pathways. Climatic Change 162, 1805-1822

@ (2020). https://doi.org/10.1007/s10584-019-02368-y



Climate policy tools (the article 6)

CDM and Ji Loss and Adaptation
damage fund fund

Clean development
mechanism and Joint

implementation .

Green Climate REDD+

fund Reducing emissions from
deforestation and forest degradation




|IAMSs, a way to sneak a peek at possible futures

Integrated assessment models
(IAMs): combine different strands of
knowledge to explore how human
development and societal choices
interact with and affect the natural
world.

IAMs offer valuable insights how
the world’s energy and land-use
systems would need to change to
respond to the climate challenge

()



How IAMs work?

Socioeconomic
assumptions

Assumptions about
population and GDP

Technology
Innovation

Technology costs and
breakthroughs

(O

ow do Integrated Assessment Models work?

GDP

Population

Climate
response

Climate sensitivity
Climate damages

POLICY

Is the one driver that can
impact the future
temperature



Why do we use IAMs? (uncertainty)

2C scenario CO2 emissions 2C scenario global temperature Models may disag ree on.
change
o 2O\ o | - How fast should technology be deployed
o ? A —messace £ 50 - Reliance on negative emission technologies

wiren = Ve
10 N :‘ //
) X ~ 2 /

Electrification Fossil fuels Renewables

100 — AIM 100% 100%
-— GCAM ) . N

Models agree on: b so% [0 B o 2 son TSN B so%
- Peak years e = - N

3 60 ’: 60% f 609
- Net-zero timing = -

- Phase-out fossils g / g = s 409

7 S
Scale-up renewables £ 200 2 E 20%

2050 2100 ‘ 2050 2100 2050 2100
@ SOUFCG Carbon Brief



IAMs in IPCC ARG?

The way in which the future
will unfold, depends on GHG
emissions which in turn
depend on Policy

SOU FCE: carbon Brief

The range of assessed scenarios results in a range of 21st century projected global warming.

Global warming relative to 1850-1900 (°C)

a. Median global warming across scenarios in categories C1 to C8
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b. Peak and 2100 global warming across
scenario categories, IMPs and SSPx-y
scenarios considered by AR6 WGI

Scenario categories, IMPs and SSPx-y scenarios

Scenario range within Climate & scenario uncertainty.
category: 5-95% across 5-95% across scenarios
medians of scenarios of 5-95% 2100 warming

IMP

SSPx-y

filled: Peak warming (over the 21st century)
open: 2100 warming



«e ¢
What type of

scenarios are we
considering?
D



The Shared Socioeconomic Pathways (SSPs)

Socioeconomic narratives
(baselines) that do not Global population Global GDP
assume any climate policy
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Socio-economic challenges
for adaptation
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CO2 emissions for SSP baselines Global mean temperature

Socioeconomic narratives 140
imply different futures if no m= SSP1 — 5.0
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@ SOU FCE . carbon Brief




Socioeconomic narratives Primary energy in 2100 by model for SSP baseline scenarios
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Combining narratives with Climate policy

Socioeconomic narratives
combines with the
Representative
Concentration Pathways
(Climate stringency)

Net CO, emissions (GtCO,)

Net CO, emissions (GtCO5)

2100

140
SSP5: Rapid growth I SSP3: Regional rivalry
100
50
SSP2:
0 Middle of the road
-25 .
140 e g A
SSP1: Sustainability S . SSP4: Inequality
100 J
50 22 >
'OA/‘ = ./}Af( .
s |
0 e —— T
_o5 ] |
1980 2020 2060 2100 1980 2020 2060
SO UrCe. carbon Brief



New generation of Scenarios (IPCC ARB)

w8 >25°C 3 - —
Net-zero budgets: Avoiding B .-

irreversible damages
’ =

50 1.5 °C (with
low overshoot) n=189
B 6 8 10 12
Mean non-CO, emissions (GtCO_e yr')
40
c
035 ~
© o030 ¢¢.0 =
g ° : o‘ ®e » ‘
. 20 2 0.25 % Y ~o °
5 § 020 $ e 020
s e .0 *
3 8 = °
o o 0.15 o o° : .
s} S 1] ,o
o g 0.10 o
20 2 e
£ 005 ‘; .
= 0 @ n=189

0 100 200 300 400 500
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Source: Rriahi, K., Bertram, C.,

Huppmann, D. et al. Cost and attainability d
of meeting stringent climate targets £8 . A
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New generation of Scenarios (IPCC ARB)

Net-zero budgets: Avoiding
irreversible damages
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Decision under uncertainty

Parametric uncertainty

Uncertainty about a assumptions o values and
quantities

Structural uncertainty

Uncertainty in the form of functions or models

Indeterminacy

We do not know what we do not know




Decision Criteria

Maximax Maximin Minimax Regret
Chose the alternative Choose the best of Choose the least regret possibilities,
with the best possible the worse possibilities minimize loss in case of a bad decision
outcome

Coefficient of

ootimism criteria Likelihood criteria Expected value
P Choose the alternative with the best When probability of each outcome is
Choose your level of risk aversion average value known

and do a weighted average of the
best and worst possible outcomes



Let's look at a practical example

Internalizing air pollution health-economic
impacts into climate policy — A global
modelling study

The Lancet Planetary Health (2022)

L. Aleluia Reis, L. Drouet, M. Tavoni

European Institute
‘\ RFF on Economics
@ CMCC and the Environment




Air Pollution and Climate Change

Air pollution is responsible for millions of deaths worldwide and
crop loss every year.

Air pollution Globally, in 2019, from all the reported causes of
death, 1 out of 9 people died prematurely due to air pollution
exposure (IHME, 2021)

Climate change will be responsible for a wide range of impacts,
including mortality.

Both share a common origin — fossil fuel burning — and possibly
a common solution — a clean energy transition.




Air Pollution and Climate Change — Synergies and

trade-offs

No straightforward synergies and co-benefits

e Some air pollutants are reflecting aerosols — Removing
pollution may cause warming
e 2 channels of air pollution reduction:

- control: end-of-pipe (EOP) technology —only reduces air
pollution

- structural: by changing the energy system (sources) — reduces
both GHG and air pollutants

¢ Different temporal (long lived vs short lived) and spatial scales
(controlled by local policies and regional meteorological and
topographical effects. )




Cost-Benefit Analysis of Air Pollution (CBAP)

e CBAP quantifies economically the costs and benefits of a given
policy.

e Optimal CBAP balances pollution abatement costs and the avoided
impacts from reduced mortality and crop losses.

e In this study, we compute global optimal CBAP policies in the
context of the Paris Agreement.

Previous studies

e Bollen et al. (2009): Global optimal CBA of AP and CC
e Vandyck et al. (2018): Non-optimal CBAP of the Paris Agreement
e Scovronick et al. (2019): Global optimal CBA of AP and CC




Global Optimal CBAP of the Paris Agreement

All features of our study:

Detailed energy system with a rich set of mitigation technology
options (WITCH)

Marginal abatement costs rather than total abatement costs
(Optimization)

AP impacts from O3 and PM, s: premature deaths and 4 crop
losses (FASSTR)

Impacts on aerosol forcing using a climate model (MAGICC)

Endogenous end-of-pipe control measures via abatement cost
curves (GAINS)




Integrated Modelling Framework
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Integrated Modelling Framework
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Integrated Modelling Framework

AP IMPACT

FASSTR

C = f(E, M, Chem)

Premature Deaths
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Integrated Modelling Framework
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Integrated Modelling Framework

AP IMPACT
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Integrated Modelling Framework
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Integrated Modelling Framework
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Integrated Modelling Framework

AP IMPACT
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Scenarios Matrix

Socio- Temperature International Value per
economic targets climate statistical life
baseline (SSP) agreement

Baselines SSP1, SSP2, Baseline .- Yes and no* High,
SSP3, SSP4, (no temperature medium,
and SSP5 target) or low

Climate SSP1, SSP2, 2°Cand 1-5°C Carbon tax Yes and no” Low
policy SSP3, SSP4, starts in 2020
and SSP5

Delayed SSP2 2°Cand 1-5°C Carbon tax Yes and no*
policy starts in 2025
or 2030

CBAP=cost-benefit assessment of air pollution. SSP=shared socioeconomic pathway. *All SSPs and temperature
targets within the row are run with and without the CBAP.

Table: Scenario matrix description

SSPs includes Air Pollution narratives.




Premature deaths — Impact of CBAP
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Premature deaths — Impact of CBAP
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Premature deaths — Impact of CBAP
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Regional distribution of the avoided damages

Cumulative Avoided premature motality [Million] (2020-2100) in SSP2 -
20 40 60




Premature deaths — Impacts of VSL

Scenarios

CBAP
TT+CBAP VSL range
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CBAP and decarbonization

2C
CBAP+2C
1.5C

CBAP+1.5C

2C
CBAP+2C
1.5C

CBAP+1.5C

Cumulative CH4 Emissions [GICeq)

.

50 200 250

Cumulative CO2 Emissions [GtCO2]

2000 4000 6000
Temperature increase in 2100 [C]

—9—

e Very little impact of CBAP on decarbonization




Delaying climate policy
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Regional Impact on Welfare of CBAP
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Impact on Inequality of CBAP
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Global and regional welfare increases when air pollution impacts are
internalised, with no negative repercussions on global inequality 14/24




Conclusions

Welfare-maximising policies accounting for air pollution
benefits reduces premature mortality by 1.62 million deaths
annually.

This is three times greater than the co-benefits of climate
policies.

Results robust to the choice of VSL

SSPs have a large influence on premature deaths and on carbon
prices

CBAP, alone, has a very little impact on decarbonization

Global and regional welfare increases when air pollution

impacts are internalised, with no negative repercussions on
global inequality.
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